Refereed Journals

1. Carlson, K.E., C.H. Price and E. Aizenman. Selective retrograde axonal transport of free glycine in identified neurons of Aplysia. Cell. Molec. Neurobiol. 1984; 4: 231-247.

2. Millington, W.R., E. Aizenman, G.G. Bierkamper, M.A. Zarbin and M.J. Kuhar. Axonal transport of a-bungarotoxin binding sites in rat sciatic nerve. Brain Res. 1985; 340: 269-276.

3. Aizenman, E., E.F. Stanley and G.G. Bierkamper. Botulinum toxin prevents stimulus-induced backfiring produced by neostigmine in the mouse phrenic nerve-diaphragm. J. Physiol. 1986; 372: 395-404.

4. Lipton, S.A., E. Aizenman and R.H. Loring. Neural nicotinic acetylcholine responses in mammalian retinal ganglion cells. Pflügers Archiv. 1987; 410: 37-43.

5. Aizenman, E., M.P. Frosch and S.A. Lipton. Responses mediated by excitatory amino acid receptors in solitary retinal ganglion cells from rat. J. Physiol. 1988; 396: 75-91.

6. Hahn, J.S., E. Aizenman and S.A. Lipton. Central mammalian neurons made sensitive to glutamate-induced toxicity by elevated extracellular calcium and made resistant by the NMDA antagonist MK-801. Proc. Natl. Acad. Sci. 1988; 85, 6556-6560.

7. Karschin, A., E. Aizenman and S.A. Lipton. The interaction of agonists and non-competitive antagonists at the excitatory amino acid receptors in rat retinal ganglion cells in vitro. J. Neurosci. 1988; 8: 2895-2907.

8. Lipton, S.A., M.P. Frosch, M. Phillips, D.L. Tauck and E. Aizenman. Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture. Science 1988; 239: 1293-1296.

9. Aizenman, E., S.A. Lipton and R.H. Loring. Selective modulation of NMDA-induced responses by reduction and oxidation. Neuron 1989; 2: 1257-1263.

10. Loring, R.H., E. Aizenman, S.A. Lipton and R.E. Zigmond. Characterization of nicotinic receptors in chick retina using a snake venom neurotoxin that blocks neuronal nicotinic receptor function. J. Neurosci. 1989; 9: 2423-2431.

11. Rosenberg, P.A. and E. Aizenman. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci. Lett. 1989; 103: 162-168.

12. Aizenman, E., A. Karschin and S.A. Lipton. Two pharmacologically distinct quisqualate-induced electrical responses in rat retinal ganglion cells in vitro. Europ. Jour. Pharmacol. 1990; 174: 9-22.

13. Aizenman,E., R.H. Loring and S.A. Lipton. Blockade of nicotinic receptors by neuronal bungarotoxin in retinal ganglion cells in vitro. Brain Res. 1990; 517: 209-214.

14. Aizenman, E., W.F. White, R.H. Loring and P.A. Rosenberg. A 3,4-dihydroxyphenylalanine oxidation product is a non-N-methyl-D-aspartate glutamatergic agonist in rat cortical neurons. Neurosci. Lett. 1990; 116: 168-171.

15. Reynolds, I.J., E.A. Rush and E. Aizenman. Reduction of NMDA receptors with dithiothreitol increases [3H]MK801 binding and NMDA-induced Ca+2 fluxes. Br. J. Pharmacol. 1990; 101: 178-182.

16. Aizenman, E., K.A. Hartnett and I.J. Reynolds. Oxygen free radicals regulate NMDA receptor function via a redox modulatory site. Neuron 1990; 5: 841-846.

17. Schulz, D.W., R.H. Loring, E. Aizenman and R.E. Zigmond. Autoradiographic localization of putative nicotinic receptors in the rat brain using 125I-neuronal bungarotoxin. J. Neurosci. 1991; 11:287-297.

18. Sucher, N.J., E. Aizenman and S.A. Lipton. NMDA antagonists prevent kainate neurotoxicity in rat retinal ganglion cells in vitro. J. Neurosci. 1991; 11:966-971.

19. Rosenberg, P.A., R.H. Loring, Y, Xie, V. Zaleskas and E. Aizenman. 2,4,5 Trihydroxyphenilalanine in aqueous solution forms a non-NMDA glutamatergic agonist and neurotoxin. Proc. Nat. Acad. Sci. 1991; 88:4865-4869. [PDF]

20. Aizenman, E., L.H. Tang and I.J. Reynolds. Effects of nicotinic agonists on the NMDA receptor. Brain Res. 1991; 551:355-357.

21. Gilbert, K.R., E. Aizenman and I.J. Reynolds. Oxidized glutathione modulates N-methyl-D-aspartate and depolarization induced increases in intracellular calcium in cultured rat forebrain neurons. Neurosci. Lett. 1991; 133:11-14.

22. Reynolds, I.J. and E. Aizenman. Pentamidine is an N-methyl-D-aspartate receptor antagonist and is neuroprotective in vitro. J. Neurosci. 1992; 12:970-975.

23. Aizenman, E., Hartnett, K.A., Zhong, C., Gallop, P.M. and Rosenberg, P.A. Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site. J. Neurosci. 1992; 12:2361-2369.

24. Aizenman, E., and Hartnett, K.A. The action of CGS-19755 on the redox enhancement of NMDA toxicity in rat cortical neurons in vitro. Brain Res. 1992; 585:28-34.

25. Aizenman, E., F.A. Boeckman and P.A. Rosenberg. Glutathione prevents 2,4,5 trihydroxyphenylalanine excitotoxicity by maintaining it in a reduced, non-active form. Neurosci. Lett. 1992; 144:233-236.

26. Hoyt, K.R., L.H. Tang, E. Aizenman and I.J. Reynolds. Nitric oxide modulates NMDA-induced increases in intracellular calcium in cultured rat forebrain neurons. Brain Res. 1992; 592:310-316.

27. Reynolds, I.J., K.M. Rothermund, D.M. Zeleski, K.A. Hartnett, R. Tidwell, and E. Aizenman. Studies on the effects of several pentamidine analogues on the N-methyl-D-aspartate receptor. Eur. J. Pharmacol.: Molec. Pharmacol. Sec. 1993; 244:175-179.

28. Tang, L.H. and E. Aizenman. The modulation of N-methyl-D-aspartate receptors by redox and alkylating reagents in rat cortical neurons in vitro. J. Physiol. 1993; 465:303-323.

29. Newcomer, T.A., A.M. Palmer, P.A. Rosenberg and E. Aizenman. Non-enzymatic conversion of 3,4-dihydroxyphenylalanine to 2,4,5-trihydroxyphenylalanine and 2,4,5-trihydroxyphenylalanine quinone in physiological solutions. J. Neurochem. 1993; 61:911-920.

30. Tang, L.H. and Aizenman, E. Long-lasting modification of the N-methyl-D-aspartate receptor channel by a voltage-dependent sulfhydryl redox process. Molec. Pharmacol. 1993; 44:473-478.

31. Tang, L.H. and E. Aizenman. Allosteric modulation of the NMDA receptor by dihydrolipoic and lipoic acid in rat cortical neurons in vitro. Neuron 1993; 11:857-863.

32. Aizenman, E., F.E. Jensen, P.M. Gallop, P.A. Rosenberg and L.-H. Tang. Further evidence that pyrroloquinoline quinone interacts with the N-methyl-D-aspartate receptor redox site in rat cortical neurons in vitro. Neurosci. Lett. 1994; 168:189-192.

33. Boeckman, F.A. and E. Aizenman. Stable transfection of the NR1 subunit in Chinese hamster ovary cells fails to produce a functional N-methyl-D-aspartate receptor. Neurosci. Lett. 1994; 173:189-192.

34. Speliotes, E.K., K.A. Hartnett, E. Aizenman and P.A. Rosenberg. Comparison of the potency of competitive NMDA antagonists against the neurotoxicity of glutamate and of NMDA. J. Neurochem. 1994; 63:879-885.

35. Jensen, F.E., G.J. Gardner, A. Williams, P.M. Gallop, E. Aizenman and P.A. Rosenberg. The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent stroke model. Neuroscience 1994; 62:399-406.

36. Newcomer, T.A., P.A. Rosenberg and E. Aizenman. Iron-mediated conversion of DOPA to an excitotoxin. J. Neurochem. 1995; 64:1742-1748.

37. Newcomer, T.A., P.A. Rosenberg and E. Aizenman. TOPA quinone, a kainate-like agonist and excitotoxin, is generated by a catecholaminergic cell line. J. Neurosci. 1995; 15:3172-3177.

38. Aizenman, E. Modulation of N-methyl-D-aspartate receptors by hydroxyl radicals in rat cortical
neurons in vitro. Neurosci. Lett. 1995; 189:57-59.

39. Boeckman, F.A. and E. Aizenman. Pharmacological properties of acquired excitotoxicity in Chinese hamster ovary cells transfected with NMDA receptor subunits. J. Pharmacol. Exp. Therap. 1996; 279:515-523.

40. Blanpied, T.A., F. A. Boeckman, E. Aizenman and J.W. Johnson. Trapping channel block of NMDA-activated responses by amantadine and memantine. J. Neurophysiol. 1997; 77:309-323.

41. Sinor, J.D., F.A. Boeckman and E. Aizenman. Intrinsic redox properties of NMDA receptor liable for developmental expression of excitotoxicity. Brain Res. 1997; 747:297-303. [PDF]

42. Hartnett, K.A., A.K. Stout, S. Rajdev, P.A. Rosenberg, I.J. Reynolds and E. Aizenman. NMDA receptor-mediated neurotoxicity: A paradoxical requirement for extracellular Mg2+ in Na+/Ca2+-free solutions. J. Neurochem. 1997; 68:1836-1845.

43. Scanlon, J.M., E. Aizenman and I.J. Reynolds. Effects of PQQ on glutamate-induced production of reactive oxygen species in neurons. Europ. J. Pharmacol. 1997; 326:67-74.

44. Brimecombe, J.C., F.A. Boeckman and E. Aizenman. Functional consequences of NR2 subunit composition in single recombinant NMDA receptors. Proc. Natl. Acad. Sci. (USA) 1997; 94:11019-11024. [PDF]

45. Hoyt, K.R., S.R. Arden, E. Aizenman and I.J. Reynolds. Reverse Na+/Ca2+ exchange contributes to glutamate-induced [Ca2+]I increases in cultured rat forebrain neurons. Molec. Pharmacol. 1998; 53:742-749. [PDF]

46. Arden, S.R., J.D. Sinor, W.K. Potthoff and E. Aizenman. Subunit-specific interaction of cyanide with the NMDA receptor. J. Biol. Chem. 1998; 273:21505-21511. [PDF]

47. Brimecombe, J.C., M.J. Gallagher, D.R. Lynch and E. Aizenman. An NR2B point mutation affecting haloperidol and CP101,606 sensitivity in single recombinant NMDA receptors. J. Pharmacol. Exp. Therap. 1998; 286:627-634. [PDF]

48. Wang, G.J., H.J. Chung, J. Schuner, M.B., Lea, E., Robinson, W.K. Potthoff, E. Aizenman and P.A. Rosenberg. Dihydrokainate-sensitive neuronal glutamate transport is required for protection of rat cortical neurons in culture against synaptically released glutamate. Europ. J. Neurosci. 1998; 10:2523-2531.

49. Aizenman, E. and W.K. Potthoff. Lack of interaction between nitric oxide and the redox modulatory site of the NMDA receptor. Br. J. Pharmacol. 1999; 126:296-300.

50. Brimecombe, J.C., W.K. Potthoff and E. Aizenman. A critical role of the N-methyl-D-aspartate (NMDA) receptor subunit (NR) 2A in the expression of redox sensitivity of NR1/NR2A recombinant NMDA receptors. J. Pharmacol. Exp. Therap. 1999; 291:785-792. [PDF]

51. Li-Smerin Y., E. Aizenman and J.W. Johnson. Inhibition by intracellular Mg2+ of recombinant NMDA receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Therap. 2000; 292:1104-1110. [PDF]

52. Sanchez R.M., C. Wang, G. Gardner, L. Orlando, D.L. Tauck, P.A. Rosenberg, E. Aizenman and F.E. Jensen. Novel role for the NMDA receptor redox modulatory site in the pathophysiology of seizures. J. Neurosci. 2000; 20:2409-2417. [PDF]

53. Leszkiewicz D.N., K. Kandler and E. Aizenman. Enhancement of NMDA receptor-mediated currents by light in rat neurones in vitro. J. Physiol. 2000; 524:365-374. [PDF]

54. Aizenman, E., A.K. Stout, K.A. Hartnett, K.E. Dineley, B.A. McLaughlin and I.J. Reynolds. Induction of neuronal apoptosis by thiol oxidation: Putative role of intracellular zinc release. J. Neurochem. 2000; 75:1878-1888. [PDF]

55. Aizenman, E., J.D. Sinor, J.C. Brimecombe and G.A. Herin. Alterations of NMDA receptor properties following chemical ischemia. J. Pharmacol Exp. Therap. 2000; 295:572-577. [PDF]

56. Sinor, J.D., S. Du, S. Venneti, R.C. Blitzblau, P.A. Rosenberg, D.L. Leszkiewicz and E. Aizenman. NMDA and glutamate evoke excitotoxicity at distinct cellular locations in rat cortical neurons in vitro. J. Neurosci. 2000; 20:8831-8837. [PDF]

57. McLaughlin, B.A., S. Pal, M.P. Tran, A.A. Parsons, F.C. Barone, J.A. Erhardt and E. Aizenman. p38 activation is required upstream of potassium current enhancement and caspase cleavage in oxidant-induced neuronal apoptosis. J. Neurosci. 2001; 21:3303-3311. [PDF]

58. Herin, G.A., Du, S. and E. Aizenman. The neuroprotective agent ebselen modifies NMDA receptor function via the redox modulatory site. J. Neurochem. 2001; 78, 1307-1314. [PDF]

59. Santos, S., and E. Aizenman. Functional expression of muscle-type nicotinic acetylcholine receptors in rat forebrain neurons in vitro. Meth. Find. Exp. Clin. Pharmacol. 2002; 24, 63-66. [PDF]

60. Legos J.J., B.A. McLaughlin, S.D. Skaper, P.J.L.M. Strijbos, A.A. Parsons, E. Aizenman, G.A. Herin and F.C. Barone. The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury. Europ. J. Pharmacol. 2002; 447, 37-42. [PDF]

61. Du, S., B.A. McLaughlin, S. Pal and E. Aizenman. In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and ERK MAPK-dependent pathway. J. Neurosci. 2002; 22, 7408-7416. [PDF]

62. Leszkiewicz, D and E. Aizenman. A role for the redox site in the modulation of the NMDA receptor by light. J. Physiol. (Lond.) 2002; 545, 435-440. [PDF]

63. McLaughlin, B.A., K.A. Hartnett, J.A. Erhardt, J.J. Legos, R.F. White, F.C. Barone and E. Aizenman. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc. Natl. Acad. Sci. (USA) 2003; 100, 715-720. [PDF]

64. Leszkiewicz, D and E. Aizenman. Reversible modulation of GABAa receptor-mediated currents by light is dependent on the redox state of the receptor. Eur. J. Neurosci. 2003; 17: 2077-2083. [PDF]

65. Pal, S., K.A. Hartnett, J.M. Nerbonne, E.S. Levitan and E. Aizenman. Mediation of neuronal apoptosis by Kv2.1 encoded potassium channels. J. Neurosci. 2003; 23: 4798-4802. [PDF]

66. Zaks-Makhina, E., Y. Kim, E. Aizenman and E.S. Levitan. Novel neuroprotective K channel inhibitor identified by high-throughput screening in yeast. Molec. Pharmacol. 2004; 65: 214-219. [PDF]

67. Hara, H. and E. Aizenman. A molecular technique for detecting the liberation of intracellular zinc in cultured neurons. J. Neurosci. Meth. 2004; 137: 175-180. [PDF]

68. Lu, Y., Y. Li, G.A. Herin, E. Aizenman, P.M. Epstein and P.A. Rosenberg. Elevation of intracellular cAMP evokes activity-dependent release of adenosine in cultured rat forebrain neurons. Eur. J. Neuroscience 2004; 19: 2669-2681. [PDF]

69. Zhang, Y., Wang, H., Li, J., Jimenez, D.A., Levitan, E.S., Aizenman, E. and P.A. Rosenberg. Peroxynitrite induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J. Neurosci. 2004; 24: 10616-10627. [PDF]

70. Land P.W. and E. Aizenman. Zinc accumulation after target loss: an early event in retrograde degeneration of thalamic neurons. Eur. J. Neurosci. 2005; 21:647-657.

71. Lee H., Chen, C.X.Q., Y.J. Liu, E. Aizenman and K. Kandler. KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses. Eur. J. Neurosci. 2005; 21:2593-2599.

72. Aras M., and E. Aizenman. Obligatory role of ASK1 in the apoptotic surge of K(+) currents. Neurosci. Lett. 2005; 387:136-140.

73. Pal S.K., K. Takimoto, E. Aizenman and E.S. Levitan. Apoptotic surface delivery of K(+) channels. Cell Death & Diff. 2006; 13: 661-667.

74. He, K., J. Huang, C.F. Lagenaur and E. Aizenman. Methylisothiazolinone, a neurotoxic biocide, disrupts the association of Src family tyrosine kinases with focal adhesion kinase in developing cortical neurons. J. Pharmacol. Exp. Therap. 2006; 317: 1320-1329.

75. Redman, P.T., B.S. Jefferson, C.B. Ziegler, O.V. Mortensen, G.E. Torres, E.S. Levitan and E. Aizenman. A vital role for Kv channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxicity. Neuroscience 2006; 143: 1-6.

76. Redman, P.T., K. He, K.A. Hartnett, B.S. Jefferson, L. Hu, P.A. Rosenberg, E.S. Levitan and E. Aizenman. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc. Natl. Acad. Sci. (U.S.A.) 2007; 104: 3568-3573.

77. Knoch, M.E., K.A. Hartnett, H. Hara, K. Kandler and E. Aizenman. Microglia induce neurotoxicity via intraneuronal Zn(2+) release and a K(+) current surge. Glia 2008; 56: 89-96..

78. Ho Y., R. Samarasinghe, M.E. Knoch, M. Lewis, E. Aizenman and D.B. DeFranco. Selective inhibition of MAPK phosphatases by zinc accounts for ERK1/2-dependent oxidative neuronal cell death. Mol. Pharmacol. 2008; 74: 1141-1151.

79. Hershfinkel, M., K. Kandler, M.E. Knoch, M. Dagan-Rabin, M. Aras, C. Abramovitch-Dahan, I. Sekler and E. Aizenman. Intracellular zinc inhibits KCC2 transporter activity. Nature Neuroscience 2009; 12:725-727.

80. Aras, M.A., H. Hara, K.A. Hartnett, K. Kandler and E. Aizenman. PKC regulation of neuronal zinc signaling mediates survival during preconditioning. Journal of Neurochemistry 2009; 110:106-117.

81. Eisenman L.N., H.J. Shu, C. Wang, E. Aizenman, D.F. Covey, C.F. Zorumsky and S.J. Mennerick. NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue. Journal of Physiology 2009; 587: 2937-2947.

82. Redman, P.T., K.A. Hartnett, M.A. Aras, E.S. Levitan and E. Aizenman. Regulation of apoptotic potassium currents by coordinated zinc-dependent signaling. Journal of Physiology 2009; 587:4393-4404.

83. Aras, M.A., R.A. Saadi and E. Aizenman. Zn(2+) regulates Kv2.1 voltage-dependent gating and localization following ischemia. European Journal of Neuroscience 2009; 30:2250-2257.

84. He K. and E. Aizenman. ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced toxicity. Journal of Neurochemistry 2010; 114:452-461.

85. Aizenman, E., M.C. McCord, R.A. Saadi, K.A. Hartnett and Kai He. Complex role of zinc in methamphetamine toxicity in vitro. Neuroscience 2010; 171:31-39.

86. Chorin, E., O. Vinograd, I. Fleidervish, D. Gilad, S. Hermann, I. Sekler, E. Aizenman and M. Hershfinkel. Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. Journal of Neuroscience 2011; 31:12916-12926.

87. Hara, H., Y. Nakamura, M. Ninomiya, R. Mochiziku, T. Kamiya, E. Aizenman, M. Koketsu and T. Adachi. Inhibitory effects of chaclone glycosides isolated from Brassica rapa L. ‘hidenabi’ and their synthetic derivatives on LPS-induced NO production in microglia. Bioorganic & Medicinal Chemistry 2011; 19:5559-556.

88. Saadi, R.A., K. He, K.A. Hartnett, K. Kandler, M. Hershfinkel and E. Aizenman. SNARE-dependent upregulation of KCC2 activity following metabotropic zinc receptor activation in rat cortical neurons in vitro. Neuroscience 2012; 210:38-46.

89. Norris, C.A., K. He, M.G. Springer, K.A. Hartnett, J.P. Horn and E. Aizenman. Regulation of neuronal pro-apoptotic potassium currents by the hepatitis C virus non-structural protein 5A. Journal of Neuroscience 2012; 32:8865-70.

90. Nguyen T.D., C. Wirblich, E. Aizenman, M.J. Schnell, P.L. Strick and K. Kandler. Targeted single-neuron infection with rabies virus for transneuronal multisynaptic tracing. Journal of Neuroscience Methods 2012; 209:367-370.

91. Petr, G.T., E. Bakradze, N.M. Frederick, J. Wang, W. Armsen, E. Aizenman and P.A. Rosenberg. Glutamate transporter expression and function in a striatal neuronal model of Huntington's disease. Neurochemistry International 2013; 62:973-981.

92. Perez-Rosello, T., C.T. Anderson, F.J. Schopfer, Y. Zhao, D. Gilad, S.R. Salvatore, B.A. Freeman, M. Hershfinkel, E. Aizenman and T. Tzounopoulos. Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis. Journal of Neuroscience 2013; 33:9259-72.

93. McCord, M.C. and E. Aizenman. Convergent calcium and zinc signaling regulates apoptotic Kv2.1 potassium currents. Proceedings of the National Academy of Sciences (USA) 2013; 110:13988-13993.

94. Shah, N.H., A.J. Schulien, K. Clemens, T.D. Aizenman, T.M. Hageman, Z.P. Wills and E. Aizenman. Cyclin E1 regulates Kv2.1 channel phospohorylation and localization in neuronal ischemia. Journal of Neuroscience 2014; 34:4326-4331.

95. McCord, M.C., P.H. Kullmann, K. He, K.A. Hartnett, J.P. Horn, I. Lotan and E. Aizenman. Syntaxin-binding domain of Kv2.1 is essential for the expression of apoptotic K+ currents. Journal of Physiology 2014; 592:3511-3521.

96. Gilad, D., S. Shorer, M. Ketzef, A. Friedman, I. Sekler, E. Aizenman and M. Hershfinkel. Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiology of Disease 2015; 81:4-13.

97. He, K., M.C. MCord, K.A. Hartnett and E. Aizenman. Regulation of pro-apoptotic phosphorylation of Kv2.1 K+ channels. PLoS One 2015; 10(6):e0129498.

98. Ganay, T., H. Asraf, E. Aizenman, M. Bogdanovic, I. Sekler and M. Hershfinkel. Regulation of neuronal pH by the metabotropic zinc receptor mZnR/GPR39. Journal of Neurochemistry 2015; 135:897-907.

99. Clemens, K., C.Y. Yeh and E. Aizenman. Critical role of casein kinase 2 in hepatitis C NS5A-mediated inhibition of Kv2.1 K+ channel function. Neuroscience Letters 2015; 609:48-52.

100. Schulien, A.J., J.A. Justice, R. Di Maio, Z.P. Wills, N.H. Shah and E. Aizenman. Zinc-induced calcium release via ryanodine receptors triggers calcineurin-dependent redistribution of cortical neuronal Kv2.1 K+ channels. Journal of Physiology 2016; 594:2647-2659.

101. Kumar, M., N. Reed, R. Liu, E. Aizenman, P. Wipf and T. Tzounopoulos. Synthesis and evaluation of potent KCNQ2/3-specific channel activators. Molecular Pharmacology 2016; 89:667-677.

102. Li, D., H. Yuan, X.R. Ortiz-Gonzales, E.D. Marsh, L. Tian, E.M. McCormick, G.J. Kosobucki, W. Chen, A.J. Schulien, R. Chiavacci, A. Tankovic, C. Naase, F. Bruckner, C. von Stulpnagel-Hortnagel, E. Aizenman, J.R. Lemke, H. Hakonarson, S.F. Traynelis and M.J. Falk. GRIN2D recurrent de novo mutation is an autosomal dominant cause of severe epileptic encephalopathy treatable with NMDA receptor channel blockers. American Journal of Human Genetics 2016; 99:802-816.

103. Ogden, K.K., W. Chen, S.A. Swanger, M.J. McDaniel, L.Z. Fan, C. Hun, A. Tankovic, H. Kusumoto, G.J. Kosobucki, A.J. Schulien, Z. Su, J. Pecha, S. Bhattacharya, S. Petrovski, A.E. Cohen, E. Aizenman, S.F. Traynelis and H. Yuan. Molecular mechanism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology. PLOS Genetics 2017; 13:e1006536.

104. Justice, J.A., A.J. Schulien, K. He, K.A. Hartnett, E. Aizenman and N.H. Shah. Disruption of Kv2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. Neuroscience 2017; 354:158-167.

105. Yeh, C.-Y., A.M. Bulas, A. Moutal, J.L. Saloman, K.A. Hartnett, C.T. Anderson, T. Tzounopoulos, D. Sun, R. Khanna and E. Aizenman. Targeting a potassium channel/syntaxin interaction ameliorates cell death in ischemic stroke. Journal of Neuroscience 2017; 37:5648-5658.

106. Justice, J.A., D.T. Manjooran, C.-Y. Yeh, K.A. Hartnett-Scott, A.J. Schulien, G.J. Kosobucki, S. Mammen, M.J. Palladino and E. Aizenman. Molecular neuroprotection induced by zinc-dependent expression of hepatitis C-derived protein NS5A targeting Kv2.1 potassium channels. Journal of Pharmacology and Experimental Therapeutics 2018; 367:348-355.

Back to top of page

Reviews, book chapters, proceedings, and other

1. Bierkamper, G.G., E. Aizenman and W.R. Millington. Neuromuscular function and organotin compounds. Neurotoxicol. 1984; 5: 245-266.

2. Bierkamper, G.G., and E. Aizenman. Cholinergic agonists and antagonists interactions on the putative nicotinic cholinoceptor of motor neurons. Proc. West. Pharm. Soc. 1984; 27: 353-356.

3. Aizenman, E., E.F. Stanley and G.G. Bierkamper. Axonally transported a-bungarotoxin binding sites as putativemechanism for motor nerve backfiring. Proc. West. Pharm. Soc. 1985 28: 201-204.

4. Aizenman, E., W.R. Millington, M.A. Zarbin, G.G. Bierkamper and M.J. Kuhar. Pharmacological characterization of axonally transported 125I-a-bungarotoxin binding sites in rat sciatic nerve. In: Hanin I., ed. Dynamics of cholinergic function. Plenum Press, N.Y. 1986: 459-466.

5. Bierkamper, G.G., E. Aizenman and W.R. Millington. Do motor neurons contain functional presynaptic cholinergic autoreceptors- In: Hanin I., ed. Dynamics of cholinergic function. Plenum Press, N.Y. 1986: 447-457.

6. Aizenman, E. and I.J. Reynolds. Redox modulation of NMDA excitotoxicity. In: Langston, J.W. and Young, A.B., eds. Neurotoxins and neurodegenerative disease. Ann. N.Y. Acad. Sci. 1992; 648: 125-131.

7. Aizenman, E. Redox modulation of the NMDA receptor. In: Palfreyman, M.G., Reynolds, I.J., and Skolnik, P., eds. Direct and allosteric control of glutamate receptors. CRC Press, Boca Raton, FL 1994; pp. 95-104.

8. Aizenman, E., J.C. Brimecombe, W.F. Potthoff and P.A. Rosenberg. Why is the role of nitric oxide in NMDA receptor function and dysfunction so controversial- In: Mize, R.R., Friedlander, M.J., Dawson, V.L., and Dawson, T.M., eds. Nitric oxide and other diffusible signals in brain development, plasticity, and disease. Progress in Brain Research, Elsevier Science Publishers, Amsterdam, The Netherlands 1998; 118: 53-71.

9. Aizenman, E. and M. Sanguinetti. Channels gone bad: Reflections from a tapas bar (Meeting Report). Neuron 2002; 34: 679-683. [PDF]

10. Leszkiewicz, D.N., B.A. McLaughlin and E. Aizenman. Protein kinases and light: unlikely partners in a receptor localization puzzle. Physiology & Behavior 2002; 77: 533-536. [PDF]

11. Pal, S., K. He and E. Aizenman. Nitrosative stress and potassium channel mediated neuronal apoptosis: is zinc the link. Pflug. Archiv. 2004; 448: 296-303. [PDF]

12. Herin, G.A. and E. Aizenman. Amino terminal domain regulation of NMDA receptor function. Eur. J. Pharmacol. 2004; 500: 101-111. [PDF]

13. Zhang, Y., E. Aizenman, D.B. DeFranco and P.A. Rosenberg. Intracellular zinc release,12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol. Med. 2007; 13:350-355.

14. Aras, M., K.A. Hartnett and E. Aizenman. Assessment of cell viability in primary neuronal cultures. Current Protocols in Neuroscience 2008; Suppl. 44: 7.18.1-7.1815.

15. Redman, P.T., M.E. Knoch and E. Aizenman. A zinc-potassium continuum in neuronal apoptosis. In: Brain hypoxia and ischemia (G.G. Haddad and S.P. Yu, eds). 2009, Humana Press. pp. 97-115.

16. Hershfinkel, M., E. Aizenman, G. Andrews and I. Sekler. Zinc Bells Rang in Jerusalem! (Meeting Report). Science Signaling 2010; 3(129):mr2.

17. Aras, M.A. and E. Aizenman. Redox regulation of intracellular zinc: Molecular signaling in the life and death of neurons. Antiox. Redox Sign. 2011; 15: 2249-2262.

18. Aizenman, E. Foreword. In: Rink, L., ed. Zinc in Human Health. IOS Press, Amsterdam, The Netherlands. 2011; vii.

19. Sensi, S.L., Paoletti, P., Koh, J.-Y., Aizenman, E., Bush, A.I. and Hershfinkel, M. The neurophysiology and pathology of brain zinc. Journal of Neuroscience 2011; 31: 16076-16085.

20. Shah, N.H. and E. Aizenman. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic preconditioning, and neurodegeneration. Translational Stroke Research 2014; 5: 38-58.

21. McCord, M.C. and E. Aizenman. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Frontiers in Aging Neuroscience 2014; doi:10.3389/fnagi.2014.00077

22. Hara, H. and E. Aizenman. Oxidative stress and neuronal zinc signaling. In: Zinc Signals in Cellular Functions and Disorders. Fukada, T. and T. Kambe, eds. Springer, October 2014, Chapter 4.

23. Hershfinkel, M., D. Ford, S. Kelleher and E. Aizenman. Seashells by the zinc shore: a meeting report of the international society for zinc biology, Asilomar, CA 2014. Metallomics 2015; 7:1299-1304..

24. Aizenman E. and P.G. Mastroberardino. Editorial: Metals and Neurodegeneration (Introduction to Special Issue). Neurobiology of Disease 2015 81:1-3.

Back to top of page